A work with many contributions

- Yong Cai – NSLS-II IXS group POC
- Scott Coburn, Stephen Antonelli – 4B flexure characterization, temperature controls and testing
- Alexey Suvorov – 4B crystal design, imaging and diffractometry methods
- Nalaka Kodituwakku – crystal processing and metrology
- Alessandro Cunsolo – experimental design
- Jeff Keister – system integration, detectors, controls, methods, logistics
- Leo Reffi – designer (all parts)
- David Levy – fabrication (all parts)
- Michelle Scaduto – shipping and travel support
- Kaz Gofron, Daron Chabot, Wayne Lewis – epics controls support
- Chiharu Takami – logistics and badging support at SPring-8 BL12XU
- Nozomu Hiraoka – beamline support at SPring-8 BL12XU
- Ku-Ding Tsuei – BL12XU POC
- Yoshiki Kohmura – beamline support at SPring-8 BL29XUL, coordination of darkroom facility access
- Yasuko Matsumoto – badging support at SPring-8 BL29XUL
- Tetsuya Ishikawa – access support at SPring-8 BL29XUL (RIKEN Coherent X-ray Optics Laboratory)
Run Timeline

- Jan 18-19 Setup (no beam)
- Jan 20 x-ray beam start. CDW aligned.
- Jan 21 aligned CS 4B crystals, observed azimuth miscut
- Jan 22 measured mediocre results for CS 4B. Exchanged 4B crystals for BNL ones, restored good result
- Jan 23 Measured motion for trapezoid actuators & Kohzu goniometers; collected D crystal lattice uniformity data
- Jan 24 Increased D crystal temperature by 1 & 2 degrees
- Jan 25 Measured final 4B & CDW scans at 2 degrees above RT; packed up mobile system
- Jan 26 Topography of 4B crystals at BL29XUL
Run Goals

• Check CS A/B crystals
• Check 4B trapezoids at ~10 nrad level with x-rays (since interferometer not sensitive enough)
• Accumulate additional D lattice uniformity data
• Check D crystal temperature control
• Collect topography data
• Confirm Petra-III result for 4B-CDW resolution, efficiency, lineshape
• Improve understanding of implementation details, individual crystals along the way
Run result: CS Crystals

- Resolution ~1.5x that seen at Petra-3 using BNL crystals (0.87 µm vs 0.6 µm)
- Efficiency: ~ 15% (was ~18%) (neglecting air)
- Obvious chi offset

⇒ NOT SO GOOD!

A1 (upstream) A2 (downstream)
Run result: 4B trapezoid

- Lost motion in + direction
- Too much load?

- Kohzu result seems pretty good!
Run result: Uniformity Test

- 4 diodes spaced 30 mm apart
- Energy / Angle and Angle / Energy grids collected (to be analyzed)
- Utilized Keithley / V2F signal chain
Run result: Temperature control

- Oscillations observed; crystals add significant thermal mass?
- Ultimate performance seen: < 1 meV combined at ~ 1 mK/h
 stability over 4 hours (room temp ~ 10-100 mK/h)

Original PID settings (40,5,10)
- Oscillation for ~ 5 hours

PID settings manually optimized (5,3,0) for 1 A range (8.1%)
- ~ 1 degree in >1.5 hours
Run result: Topography

- All A & B crystals imaged in 1 8-hour shift, including setup/alignment at BL29XUL, chemical prep/cleanup, and development.
- Limited control of exposure time (< 2 seconds).
- Crystal and beam quality looks v. good, CS crystals may have measurable skew.
Run result: 4B-CDW confirmation

D rocking curve: 0.509 µm
(4.45 µrad): 1.06 meV TOTAL
(**assuming 8.75 µrad/µm per interferometer calibration)
Efficiency: 24% neglecting air

Compared to
0.63 µm (1.3 meV)
Efficiency 18% neglecting air

4B rocking curve: 0.348 µrad
~1.16 meV TOTAL**
(**assuming 0.300 µrad/ meV??)

COULD NOT DO THIS LAST TIME
(Kohzus better here)
Steps along the way

Energy setting

Phase 1: 4Bounce alignment and test

Table arrangement (detectors and motor cables)

Ready for next user!
Notes on the implementation at SPring-8

- Slit convention (CCW ring)
 - H hall (outboard, what we would call -x)
 - R ring (inboard, what we would call +x)
 - T top → U upper
 - B bottom → L lower or D down

Issues
- 1 instance of CL pico jamming at + limit
- 1 pico 4-wire coupler found NG
- CDW has D offset from C?
- Shims don’t match BNL A crystals
- Power trip(s) at BL12XU
- One mini diode channel noisier than others
- APD pulse tripling when teed to beamline
- Some PI drivers still not working
- A chi return springs much weaker than flex pivot (rubber band used)

Control system at BL12XU=EM
Control system at BL29XUL=homebrew
the SPring-8 Environment

Super strong doors and hutchs
(pneumatic or AC motor)

Temperature controlled environment of the hutch and experimental Hall: data available.
(need quantification, comparison with PETRA-III)

BL12XU Hutch underpowered?
Power trips occurred when Keithleys were added 1/23 (don't draw much)
“Power” tools used

- “super paper” (gafchromic XR-QA2) (ours!)
- Cross line laser level (ours!)
- Xray Imaging camera from Princeton Inst.
- Digital level (~0.05 degree accuracy), unfortunately somewhat bulky
- NSLS-built APD

- “MINI” Diode Boxes

NOT USED THIS RUN (could be useful later)

Remote visible cameras
New “mini” diodeboxes

The newest and smallest member of the diodebox family

5 boxes for 10x10 diodes made just for this trip

Dual arrangement for D phi setting:
 - A real time saver

Slide arrangement for uniformity test

440 same position AND intensity
Controls performance (EPICS etc)

- New Keithley 428 implementation worked like a champ
- New i404 over-range alarm worked like a champ
- NX gave NO issues using updated client configuration (directdraw disabled). Observed slowdowns on server side (2-3x) due to Newplot
- PI E621 controller still gives a few wrinkles
 - Resolution and deadband used how? We set to 0.001 µm
 - Retries used how? We set to 0
 - Upon powercycle, disable/enable sequence required, in addition to re-assertion of last actuator setting (reverts to 0)
- Lakeshore application difficult to use, some readbacks apparently missing
- CSS channelarchiviewer not reporting data older than 3-4 hours, LS temperatures not archived?
Shipping improvements

- Palettes and straps
- Laser level with shipping documentation

Ready for pickup at BNL bldg 703 East.

As delivered to SPring-8 BL12XU
Note BNL shipping added the saran wrap

Latest on return ➔ to be picked up at SPring-8 Feb 2
Cable management... Can we do better?

Is this what it's supposed to look like?

This PI camera makes a handy cable support.

“Typical” beamline hutch cable management at SPring-8
Mysteries

- Additional (weak) peak seen in CDW scan after 4B
 - Was seen at Petra-III also

- Kohzu goniometers at SPring-8 better than the ones at Petra-III?
 - Drivers?
 - Mechanics?

- Why can’t CS get it right? What is the key?
 - Substrate?
 - Surface finishing?
 - ?
More to come

- Detailed analysis of resolution, lineshape, and efficiency
- Individual crystal reflectivities summary (see paper log book)
- Topography analysis (scan films)
- Uniformity data preparation and analysis
- Temperature data analysis