Single-crystal Diamond Diode X-ray Sensors

Commercial availability of state of the art, high-purity single-crystal synthetic diamond is allowing development of novel x-ray sensors. The low absorption and high thermal conductivity make it ideal for such application. On the other hand, charge trapping, diffusion, recombination and photoconductive gain offer challenges to realization. The underlying charge propagation dynamics are probed as such devices are developed. Successes in responsivity quantification, as well as performance at low energies, high flux and high speed are demonstrated and correlated with our developing understanding of diamond as an electronic material.

*Brookhaven National Laboratory, NSLS-II Project
DIAMP 2010 meeting @ Tech-X Corp, Boulder, CO June 14-16, 2010
X-ray Transmission of Diamond

\[T = e^{-t/\lambda} \]

*Photoelectrons are “born” within the diamond and therefore lose no energy to metal contacts except by diffusion – this provides an ideal way to probe diamond bulk.

Source: http://henke.lbl.gov/optical_constants/atten2.html
Transmission of Various Thickness Diamond

*High transmission (thin plates) desirable for low energy x-ray beamlines
Absorption Per Unit Depth

\[A = 1 - T \]

\[\frac{d}{dt} A = \frac{1}{\lambda} e^{-t/\lambda} \]

Since soft x-ray absorption is mostly at the incident electrode, the carrier to be transmitted through the diamond plate is selected by applied bias polarity.
Test Geometry

- 4x4 mm² diamond plate
- 20-30 nm Pt metallization
- 1 or 4 pads geometry
- X-ray Beam Propagation

Transmission Electrode
- Current measurement

Incident Electrode
- Bias (+ for holes, - for electrons)
First Observations at Soft X-ray Energies

Instantaneous result for hole transmission, recovered after unbiased illumination

Data conditions:
• 1 keV x-rays
• 0.5 µW (3×10^9 phot/s) per mm^2
• 100 V bias
• Ohmic (annealed) contacts
• Oscilloscope measurements were made with 1 MΩ input impedance

Note: buildup of gain for electron transmission vs time is also observed

"Charge Collection and Propagation in Diamond X-Ray Detectors"
Keister, Smedley, Dimitrov, Busby, to be published IEEE-TNS Aug. 2010
Pulsed Bias Mitigation for Charge Trapping

Biasing scheme

Reported duty cycle ("d.c.") appears in overall responsivity measurement:

\[S = \frac{1}{d.c.} \cdot \frac{I}{P} \]

"Single crystal diamond photodiode for soft X-ray radiometry"
Keister, Smedley, NIMA 606 (2009) 774–779
Response vs Field (e-, h+) still shows gain

Flight times are important, velocities are similar.

Data conditions:
- 0.3 mm thick diamond
- ~35 nm Ti/Pt contact (annealed, ohmic)
- 1 keV photon energy
- ~60 nW beam intensity in a 0.1 mm² centrally illuminated area
- 50% duty cycle pulsed bias, 100 Hz

Improved diamond or blocking contacts can prevent photoconductive gain (hole injection)

“Charge Collection and Propagation in Diamond X-Ray Detectors”
Keister, Smedley, Dimitrov, Busby, to be published IEEE-TNS Aug. 2010
Holes, Pulsing Give Calculable Responsivity

Simple responsivity model

All absorbed photon energy ultimately produces charge via Auger relaxation and secondary electron generation; deviations from bulk responsivity are determined by absorption and recombination

W measurement with low uncertainty: $W = 13.3 \pm 0.3$ eV (compare to 3.66 eV for silicon, 34 eV for air)

$(1/eV = A/W)$

“Single crystal diamond photodiode for soft X-ray radiometry”
Keister, Smedley, NIMA 606 (2009) 774–779
Unannealed Mo contacts

Soft x-rays, bias polarity determine carrier which must cross the diamond bulk

Hole collection is more efficient (electrons are trapped)

“Single crystal diamond photodiode for soft X-ray radiometry”
Keister, Smedley, NIMA 606 (2009) 774–779
Duty Cycle and Charge Cleaning: e\(^{-}\) vs h\(^{+}\)

Responsivity here is not corrected for duty cycle (to show effect of changing it). True linearity is 100% extrapolated value. Linear dependence on duty cycle indicates “safe” operating range.

Holes have higher bulk responsivity and can be collected at higher duty cycle (>90%); where charge is trapped (mostly electrons), lower d.c. is required (60% or less). 100 Hz or greater frequency is recommended.

Photon Energy and Field Dependence

As energy is increased, two effects are observed:

1. Attenuation length is increased (charge is initially deposited further into the bulk, away from contacts where diffusion / recombination can cause losses)

2. Selection of a primary carrier becomes less important (both carriers drift from the bulk); lower-mobility electrons begin to participate even under “hole” bias
Field Dependence at Low Energy

Diffusion into window contact limits responsivity at low energies, where attenuation length is short.

At low field, recombination from carbon absorption is signal-limiting.

At high field, diffusion loss is less important, and metal contact features dominate (e.g. below 300 eV).

C K edge: 284 eV (depends on type of carbon)

Spectroscopic features characteristic of diamond (not graphite)
Diffusion/Recombination at Entrance Window

VORPAL simulations:

Escape of energetic electrons from metal contact into active diamond not considered

Field dependence strong, energy dependence weak.

Simulations results well-approximated by a simple form (useful for further analysis):

\[CE = 1 - (1 - CE_0) e^{-x/\tau} \]
Combined model (diffusion & recombination)

Experimental data for responsivity, and fitting models:

• Simple carbon deadlayer

• Recombination (folding collection efficiency vs. depth data into photon energy scan data):

\[
S = \frac{1}{W} e^{-t_M/\lambda_M} \left(1 - e^{-t_a/\lambda_D}\right) \int_0^\infty \frac{1}{\lambda_D} e^{-x/\lambda_D} CE \, dx
\]

\[
= \frac{1}{W} e^{-t_M/\lambda_M} \left(1 - e^{-t_a/\lambda_D}\right) \left(1 - \frac{1 - CE_0}{1 + \lambda_D/\tau}\right)
\]

“Charge Collection and Propagation in Diamond X-Ray Detectors”
Keister, Smedley, Dimitrov, Busby, to be published IEEE-TNS Aug. 2010
Carbon / Diamond K Absorption Spectra

Characteristic features:

a. sp² (surface)

b. Onset of sp³ (diamond) bulk signal

c.-f. Additional signature features of diamond

Nominal Carbon (K) Absorption Edge:

- Amorphous or graphitic carbon: 284 eV
- Diamondlike absorption edge: ~ 290 eV

White/Pink Beam Setup at NSLS-X28c

- X-ray port
- Beam defining aperture
- Diamond Detector
- Ion Chamber
- Calorimeter
White Beam Test

Flux Linearity and Current Limit Test

- X-ray focused/unfocused white beam used to generate carriers
- Up to 11-17 W of x-ray power, with energies ranging from 6-15 keV
- 2mm² area intercepts ~ 3% of the beam (unfocused), full beam (focused to 1.1x0.6 mm²)
- Diamond absorbs ~10%
- 85 mA current: 13 A/cm² (focused) 40 mA current: 2 A/cm² (unfocused)
- Ion chamber used for low power calibration, copper calorimeter for higher power
- Response is linear over 11 orders of magnitude

*White beam flux / positioning diagnostics presently sought by several synchrotrons

"Development of diamond-based x-ray detection for high flux beamline diagnostics", Bohon, Muller, Smedley in preparation.
Flux Linearity

Fit parameters:
• Mirror angle (affects spectrum)
• W parameter (matches monochromatic measurements!)

Note:
85 mA ~ 13 A/cm² (10x the amplifier need)!

High Speed Performance

High bias, blocking contacts, high quality diamond allows observation of synchrotron bunches with <5 ns response time (X28c pink beam)

NSLS-XRAY ring structure (25 of 30 bunches filled) clearly seen, with low background (minimal photoconductive “persistent” current)

(details addressed by J. Smedley)

Quad Beam Position Monitor

- PCB-mount version for monochromatic (low intensity) beam
- Wirebonds to LEMO connectors (may also use clips)
- 50 µm “street” between quadrant pads
- Ultra-slim design to reach tight spaces

High sensitivity, response uniformity across each of 4 pads

*Monochromatic beam flux / positioning diagnostics also presently sought by several synchrotrons for beamline and accelerator diagnostics (also white beam)
Quad Diode Position Monitor

Quadrant Beam Position Monitor

One side metalized with quadrant geometry (30nm Pt), Opposite side is a solid electrode

Beam position is determined by

\[X = G_x \frac{(B + D) - (A + C)}{A + B + C + D} \]
\[Y = G_y \frac{(A + B) - (C + D)}{A + B + C + D} \]

\(G_x \) and \(G_y \) depend on beam size and shape and must be calibrated

Positional resolution of a single crystal quad detector measured with white beam.

“position noise” is a combination of actual beam wander, motor position noise, and detector noise (ultimate spatial resolution down to 0.1 um possible), here ~6 um (beam dominated).

~300 um thickness; tested at NSLS beamline X28c

Keys to Sensor Success

3 ways to make the diode non-photoconductive (fast and quantitative):

1. Make sure it has no relevant defects (nano inclusions?) – topography
2. Use blocking contacts (and prevent annealing) – Pt, Al?
3. Use pulsed bias (reduced duty cycle)

Furthermore, *high field* helps with

- Diffusion/recombination loss mitigation
- Device speed (also thinner plates help)
- Spatial resolution (also thinner plates help)
Lingering Questions about Diamond

• Trapping: Charge becoming “trapped” builds up polarization field for subsequent charge to propagate through (both carriers)
 • Time evolution of charge-up, cleaning given flux of photons of given energy (pulsed bias, single bunch)
 • Relate observed time behavior to material defectivity/purity
 • Differences in responsivity, CCD between carriers

• Diffusion-limited resolution and quad design optimization (both carriers)

• Boundary effects
 • Charge from metal contact
 • Conductivity along bare diamond surface
 • Blocking contacts, hole injection
Acknowledgments

• BNL-NSLS, many beamlines (L. Berman, M. Allaire, B. Dong, Z. Zhong, E. Dimasi, J. Sweet)
• CWRU-CBS (J. Bohon, M. Sullivan)
• LANL (J. Distel, D. Casperson)
• Tech-X (D. Dimitrov, R. Busby)
• U. Stony Brook (E. Muller, B. Raghothamachar, M. Dudley, M. Gaowei)
• BNL-IO (J. Smedley, D. Pinelli, G. DeGeronimo, J. Walsh, J. Triola)
• BNL-CAD (I. Ben-Zvi, X. Chang, Q. Wu)
• APS (K. Attenkofer)
• BNL-PXRR (A. Heroux, J. Skinner, D. Schneider, R. Sweet)